

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF SAFE DRINKING WATER

2022 ANNUAL DRINKING WATER QUALITY REPORT

PWSID #: 4560042 **NAME**: Borough of Somerset

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, ó hable con alguien que lo entienda. (This report contains important information about your drinking water. Have someone translate it for you, or speak with someone who understands it.)

WATER SYSTEM INFORMATION:

This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Larry Kowatch, Superintendent and Chief Operator at (814) 445-2111. We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held at the Somerset Borough Municipal Building. Council meetings are held the fourth Monday of every month at 7:00 PM. Municipal Water Authority meetings are held the third Monday of every month at 7:00 PM. Visit the website: somerestborough.com or call (814) 443-2661 for more information.

SOURCE(S) OF WATER:

Our water source(s) is/are: (Name-Type-Location)

Well #1 and Well #2 Well water Shafer Run Road, Somerset, PA 15501

Well #3 Well water 278 Beck Road, Somerset, PA 15501

Well #7, #8, #9 Well water 3518 Coxes Creek Road, Somerset, PA 15501

The Borough of Somerset purchases water from the *Somerset County General Authority Water System*, please review their "Annual Drinking Water Quality Report" for additional information (Attached).

A Source Water Assessment of our source(s) was completed by the PA Department of Environmental Protection (Pa. DEP). The Assessment has found that our source(s) of is/are potentially most susceptible to Transportation Corridors, Junk Yard / Auto Repair Shop and Dairy Farms. A summary report of the Assessment is available on the Source Water Assessment & Protection web page at http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/SrceProt/SourceAssessment/default.htm. On review of the document, note that the Source Water Assessment includes surface water from the Laurel Hill Creek. The Borough of Somerset no longer has a permit to use the Laurel Hill Creek's surface water as a source. Also, Somerset Borough's water production is limited to only six well water sources not eight. Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the Pa. DEP Ebensburg Regional Office, Records Management Unit at (814) 472-1921.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the *Safe Drinking Water Hotline* (800-426-4791).

MONITORING YOUR WATER:

We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, 2022. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

DEFINITIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EP – Entry point from treatment plant to the distribution system. EP 101 = Laurel Hill Filtration Plant EP 103 = Coxes Creek Treatment Plant

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level (MinRDL) - The minimum level of residual disinfectant required at the entry point to the distribution system.

Plant 300 - Laurel Hill Filtration Plant

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Mrem/year = millirems per year (a measure of radiation absorbed by the body) ppm = parts per million, or milligrams per liter (mg/L)

pCi/L = picocuries per liter (a measure of ppq = parts per quadrillion, or picograms per radioactivity) liter

ppb = parts per billion, or micrograms per liter ppt = parts per trillion, or nanograms per liter $(\mu g/L)$

DETECTED SAMPLE RESULTS:

Chemical

Contami	inants								
Contam	ninant	MCL in CCR Units	MCLG	Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Chlorine	EP 101	MRDL= 4	MRDLG= 4	2.48	2.01 - 2.48	ppm	2022	N	Disinfectant water additive used to control microbes.
Chlorine	EP 103	MRDL= 4	MRDLG= 4	2.51	1.81 - 2.51	ppm	2022	N	Disinfectant water additive used to control microbes.
Fluoride	EP 101	2*	4	1.03	.60 - 1.03	ppm	2022	N	Water additive which promotes strong teeth.
Fluoride	EP 103	2*	4	1.03	.60 - 1.03	ppm	2022	N	Water additive which promotes strong teeth.
Nitrate	EP 101	10	10	.60	NA	ppm	9/14/2022	N	Runoff from fertilizer use.
Nitrate	EP 103	10	10	0.2	NA	ppm	9/14/2022	N	Runoff from fertilizer use.
Nitrite	EP 101	1	1	0	NA	ppm	9/14/2022	N	Runoff from fertilizer use.
Nitrate	EP 103	1	1	0	NA	ppm	9/14/2022	N	Runoff from fertilizer use.
Arsenic	EP 101	10	0	0	NA	ppm	9/14/2022	N	Erosion of natural deposits; Runoff from orchards
Arsenic	EP 103	10	0	0	NA	ppm	1/12/2021	N	Erosion of natural deposits; Runoff from orchards

^{*}EPA's MCL for fluoride is 4 ppm. However, Pennsylvania has set a lower MCL to better protect human health.

Contam	ninant	MCL in ppm	MCLG	Highest *LRAA	Range of Quarterly *LRAA	Units	Sample Date	Violation Y/N	Sources of Contamination
HAA5	DEP ID 701	0.060	NA	.045	.029045	ppb	2022	N	By-product of drinking water disinfection
HAA5	DEP ID 702	0.060	NA	.049	.036049	ppb	2021	N	By-product of drinking water disinfection
ТТНМ	DEP ID 701	0.080	NA	.036	.025036	ppb	2022	N	By-product of drinking water disinfection
TTHM	DEP ID 702	0.080	NA	.042	.027042	ppb	2022	N	By-product of drinking water disinfection

^{*}Locational Running Annual Average (LRAA) EPA/DEP Stage 2 Disinfectant Byproducts Rule requires this quarterly method to indicate MCL Violations.

Heading	DEP Maximum Contaminate Level	Heading DE	P Maximum Contaminate Level
рН	8.50	Mang Manganese	.05 mg/l
Alk Alkalinity	NA	Iron	.30 mg/l
T Hard Total Hardn	ess NA	Turb Turbidity	3
C Hard Calcium Har	dness NA	TDS Total Dissolved Solid	ls 500 mg/l
Chloride	250.0 mg/l	Cond Conductivity	NA
F Chlorine Free Chlo	orine 3.00 mg/l	Fl2 Fluoride	2.00
T Chlorine Total Ch	lorine 4.00 mg/l	Po4 Phosphate	NA

Distribution Sys	tem Disinfec	tant Resid	ual				
Contaminant	Minimum Disinfectant Residual	Lowest Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Chlorine Distribution as Total Chlorine	MCL .20	.64	.64 – 2.22	ppm	2022	N	By-product of drinking water disinfection

Microbial					
Contaminants	MCL	MCLG	Highest # or % of Positive	Violation Y/N	Sources of Contamination
Total Coliform Bacteria	For systems that collect <40 samples/month: More than 1 positive monthly sample	0	0	N	Naturally present in the environment.
Fecal Coliform Bacteria or E. coli	0	0	0	N	Human and animal fecal waste.

VIOLATIONS CONCERNING HEALTH EFFECTS:

None "No MCL's or Treatment Techniques were exceeded" in any location of the CCR.

OTHER VIOLATIONS:

None

EDUCATIONAL INFORMATION:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- ... Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- ... Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- ... Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- ... Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- ... Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's *Safe Drinking Water Hotline* (800-426-4791).

101
(EP)
/ Point
Entry
Plant
Filtration
≣
Laurel
Facility #1

		Lab рН	Alk	T Hard	C Hard F C	F Chlorine	Mang	Iron	Po4	FI2	Temp	TDS	Cond.	Inactivation Log Values 4.0
Ave		7.59	72.77	88.89	80.04	2.23	0.01	0.05	0.52	0.83	12.58	108.88	173.88	311.48
Min		7.46	64.4	70	69.2	2.01	0.001	0.01	0.16	9.0	6.0	99.3	143.5	197.46
Max		7.76	772	101.6	106.4	2.48	0.033	90:0	0.62	1.03	16.5	116.5	203.1	441.04
Facility #2		Shafer Run Wells	Ą	T Hard	C Hard	Mang	Iron	Temp	TDS	Cond.				
Ave	<u> </u>	7.75	71.76	89.87	80.80	0.01	0:03	13.17	105.92	172.09				
Min		7.61	62.8	77.2	9.79	0.002	0.01	0.92	11.2	130				
Max		7.89	92.4	104.8	112.4	0.031	0.07	17.6	114.2	201.7				
Facility #3	Coxes	Facility #3 Coxes Creek Filtration Plant Entry Point (EP) 103	ion Plant	Entry Point	t (EP) 103									
		Нd	Alk	T Hard	C Hard	FI2	Fl2 F Chlorine	Mang	Iron	Po4	Temp	TDS	lr Cond.	Inactivation Log Value 4.0

	ļ	Hd	Alk	Alk T Hard	C Hard	FI2	FI2 F Chlorine	Mang	Iron	Po4	Temp	TDS	Cond.	4.0
Ave		7.27	158.35	136.15	113.08	0.82	2.02	0.02	0.02	0.52	10.81	167.95	280.69	24.38
Min		7.16	148.8	124	102.4	9.0	1.81	0.001	0.001	0.1	8.3	150.4	252	20.00
Max		7.43	175.2	156.8	153.2	1.03	2.51	0.043	0.52	0.85	13.3	184.7	307	29.11
Facility #4	Quen	Facility #4 Quemahoning Chemical Feed Building Entry	nemical Fee	gd Building		Point (EP) 104	-				Finished Water Analysis	er Analysis		
		INF (Influence from County Water System, Pu	ce from Cour	oty Water Sys		rchased Water)					(EP to Distribution System)	tion System)		
		Н	Alk	T Hard	ō	T Chlorine	Mang	Iron	TDS	Cond.	T Chlorine	Po4	FI2	
Ave	<u> </u>	7.35	38.40	92.09	70.17	1.24	0.01	0.05	119.05	201.51	1.45	0.47	0.76	
Min		7.12	28.4	70.8	55.7	1.01	0.0011	0.01	103.8	157.9	6:0	0.33	0.51	
Max		7.53	54.8	132	111.2	1.55	0.044	90.0	136.2	241.2	1.59	0.67	1.11	

On the average our water production is as follows: Note:

Facility #1 and Facility #2 are combined production (Facility #2 water flows through Facility #1) producing 23%, Facility #3 produces 17% and we purchase 60% from the County water system through Facility #4

 $^{**}\ \mbox{With water}\ \mbox{demand}\ \mbox{and}\ \mbox{seasonal}\ \mbox{conditions}\ \mbox{these}\ \mbox{percentages}\ \mbox{vary}.$

Heading	DEP Maximum Contaminate Level Heading	minate Level		DEP Maximum Contaminate Level	taminate Level
Hd	8.50	0.	Mang Manganese		.05 mg/l
Alk Alkalinity	NA		Iron		.30 mg/l
T Hard Total Hardness	NA NA		Turb Turbidity		3.00
C Hard Calcium Hardness	dness		TDS Total Dissolved Solids	lids	500 mg/l
Chloride	250	250.0 mg/l	Cond Conductivity		ΑN
F Chlorine Free Chlorine		3.00 mg/l	FI2 Fluoride	DEP 2.00 mg/l - EPA 4.0 mg/l	PA 4.0 mg/l
T Chlorine Total Chlorine		4.00 mg/l	Po4 Phosphate		۸N
Alum	.200	200 mg/l	Copper		1.00 mg/l
Zink	5.00	5.00 mg/l			